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Abstract—This paper compares and contrasts several
coordination schemes for a system that continuously plans
to control collections of rovers (or spacecraft) using collec-
tive mission goals instead of goals or command sequences
for each spacecraft. A collection of self-commanding
robotic systems would autonomously coordinate itself to
satisfy high-level science and engineering goals in a
changing partially understood environment — making the
operation of tens or even a hundred spacecraft feasible.
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1. INTRODUCTION

While explicitly commanding a spacecraft via low level
command sequences has worked spectacularly on previous
NASA missions, there are limitations deriving from com-
munications restrictions — scheduling time to communicate
with a particular spacecraft involves competing with other
projects due to the limited number of deep space network
antennae. This implies that a spacecraft can spend a long
time just waiting whenever a command sequence fails. This
is one reason why the New Millennium program has an
objective to migrate parts of mission control tasks onboard
a spacecraft to reduce wait time by making spacecraft more
robust [1].

In general, autonomous platforms (rovers or spacecraft),
must balance long-term and short-term considerations.
They must perform purposeful activities that ensure long-
term science and engineering goals are achieved and ensure
that they each maintain positive resource margins. This
requires planning in advance to avoid a series of
shortsighted decisions that can lead to failure. However,
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they must also respond in a timely fashion to a dynamic and
partially understood environment. In terms of high-level,
goal-oriented activity, the platforms must modify their
collective plans in the event of fortuitous events such as
detecting scientific opportunities like a sub-storm onset in
Earth’s magnetosphere or a Martian hydrothermal vent, and
setbacks such as a spacecraft losing attitude control. For an
autonomous spacecraft, the software to satisfy these
requirements can be partitioned into 4 components corres-
ponding to a belief-desire-intention (BDI) architecture [2]:

e a mission manager to generate desires by computing
the high level science goals from commands and
detected opportunities,

e a planner/scheduler to generate intentions by turning
goals into activities while reasoning about future
expected situations,

s an executive/diagnostician to generate beliefs by
interpreting sensed events while initiating and
maintaining activities, and

e a reactive controller to execute actions by interfacing
with the spacecraft to implement an activity’s primitive
feedback loops.

Whether they are orbiters, probes or rovers, coordinating
multiple:  distributed BDI agents introduces unique
challenges for all four autonomy-supporting technologies.
Issues arise concerning interfaces between agents,
communication bandwidth, group command and control,
and onboard capabilities. For example, consider a mission
with a cluster of satellites simultaneously observing a point
on a planet from different angles with different sensors. A
certain level of communication capabilities will need to be
assigned to each, possibly limiting the amount of
information that can be shared between the satellites (and a
ground station). The onboard capabilities also need
consideration, including computing power and onboard
data storage capacity. This will limit the level of autonomy
each of the satellites can have. Finally, these issues apply
to multiple rover missions too. A group of rovers might



want to simultaneously measure vibrations caused by an
explosion to determine the subsurface geology of an area
on Mars.

This paper compares and contrasts 3 ways to distribute a
planner/scheduler amongst a population of rovers that have
separate executive/diagnosticians and reactive controllers.
The first approach places the planner/scheduler on a lander
that remotely commands the rovers. The second is more
distributed in that it replicates a planner across the
population to let each rover plan its own activities, while
the lander handles goal distribution. The last approach
advertises all goals and lets each rover bid for a goal based
on how well its local planner can satisfy the goal given
local information. These approaches delineate a space of
approaches where the platform that distributes tasks
maintains progressively less information on the entire
population.

This paper’s sections subsequently describe thought
experiments for multi-rover missions that motivate 8
performance metrics for evaluating approaches toward
continuous task-distribution-based coordination, explain
how continual planning lets a population adapt to local
conditions, compare and contrast 3 coordination methods,
discuss related work, and finally conclude.

2. MULTI-PLATFORM THOUGHT EXPERIMENTS

In order to focus this discussion on distributed autonomy in
space, consider different types of observations that motivate
future multi-rover missions. There are 4 such kinds of
observations depending on the phenomena begin measured:

e improved coverage when observing/exploring large
areas (like a number of identical small rovers for
exploring a remote area);

e specialized probes with explicitly separate science
objectives (like a fast scout rover followed by a slower
rover with more sensors);

e multi-point in-situ sensing for observing large scale
phenomena that are only detectable with multiple
spatially separated in-situ sensors (like a number of
rovers determining chemical gradients within the
Martian atmosphere); and

e building large synthetic aperture sensors with many
small spatially separated sensors (like a number of
rovers observing near-surface stratigraphy by making
seismic tomography measurements).

These reasons for having multiple platforms in a mission
are not exclusive. For instance, a rover might alternate
between observing rocks in isolation and participating in a
seismic tomography measurement.

Coordinating Task Distribution

In missions where each rover performs its task in isolation,
the difference between an autonomous multi-rover mission
and many autonomous single rover missions involves
distributing tasks to the different rovers. While the task
distribution for multiple autonomous single rover missions
is determined on the ground, an autonomous multi-rover
mission can distribute and redistribute tasks remotely. This
feature improves both distribution quality and robustness
by letting the population use local information to optimize
the initial task distribution and to redistribute tasks when a
rover suffers an anomaly, unexpectedly finishes a task
early, or detects an unanticipated science opportunity.

As an example of coordinated autonomous task distrib-
ution, consider multiple rovers surveying rocks in an area
on Mars using MISUS [3]. In this system a Mars lander
manages a population of rovers by analyzing data from past
observations, determining new observations, assigning
observation goals to rovers, and collecting data as each
rover moves from rock to rock, performs experiments in
isolation, and analyzes its local observations (fig. 1). This
system autonomously maximizes science return while
minimizing the most heavily tasked rover’s execution time.

Status & Observations

Science
Analysis

figure 1 - coordinating multiple rovers with MISUS

Coordinating Task Execution

The multi-point in-situ sensing and large synthetic aperture
tasks differ operationally from the other 2 classes in that the
separate rovers do not operate in isolation. For instance
consider a seismic tomography measurement. To
determine near-surface stratigraphy, one rover detonates an
explosive charge while others measure vibrations at remote
areas. By knowing the relative locations of the rovers and
comparing the measured vibrations, we can determine the
composition of minerals near the surface beneath the
rovers. To make these measurements, the rovers must
tightly coordinate their activities to assure that each rover is
both correctly positioned and measuring vibration when the
explosion occurs.



In many respects coordinated task execution is easier than
coordinated task distribution. For the smaller missions
designating a master rover that commands the other (slave)
rovers as though they were physically attached solves this
problem, but bandwidth restrictions keep this approach
from scaling with either the number of slaves or the
complexity of each slave. Resolving this scaling issue is
outside this paper’s focus.

Autonomy Architectures

In an earlier paper we describe 3 different autonomy
architectures for a constellation of spacecraft involving
leaders, followers, and slaves [4]. Here we expand this
taxonomy to also include contractors. The number of
autonomy modules on a spacecraft determines which of the
4 classes it falls into:

e a slave has no modules and is tele-operated by the
reactive control module of another nearby spacecraft;

s a follower has both an executive/diagnostician and a
reactive controller (like many existing spacecraft);

e an contractor has a follower’s components and a
planner/scheduler to optimize local activities (like
DS1’s remote agent experiment); and

* aleader has all four components.

With these 4 classes, we can define a multi-platform
mission’s autonomy architecture by stating the class of each
platform, and how the collection of platforms coordinates
its activity. In terms of MISUS, the architecture consists of
having the lander lead, and letting the rovers act as
followers or contractors depending on the desired local
autonomy.

Given a multi-rover mission, there are two sets of metrics
for evaluating the acceptability of autonomy software. The
first set motivates minimizing the amount of remote
autonomy and has 4 metrics:

e the amount of explicit control an operator has over the
population’s activities,

s the feasible accuracy of modeling the population’s
activities on the ground,

» the autonomy software’s testability, and

¢ the amount of needed onboard computing power.

While the first set of metrics tend to be maximized by
reducing the amount of autonomy on a constellation, the
second set of 4 evaluation metrics are maximized by
increasing remote autonomy:

e the population’s event response time,

e the required bandwidth between platforms and to
Earth,

* the quality of the downlinked data, and
the functional redundancy.

3. CONTINUAL PLANNING

Both single and multiple autonomous rovers must respond
to a (somewhat) dynamic, unpredictable environment. In
terms of high-level, goal-oriented activity, a planner needs
to modify rover sequences to account for fortuitous events
such as observations completing early and setbacks such as
a failure to traverse an assigned path.

The need to rapidly respond to unexpected events motivates
continual planning, an approach where a planner
continuously updates a sequence in light of changing
operating context. In such an operations mode, a planner
would accept and respond to activity and state updates on a
one to ten second time scale. CASPER [5] is an example of
a continual planner based on a heuristic iterative repair
approach toward planning [6, 7]. This approach takes a
complete plan at some level of abstraction and manipulates
its actions to repair detected flaws. Example flaws would
involve an action being too abstract to execute or many
simultaneous actions with conflicting resource needs.

Making a heuristic iterative repair planner continual within
a planner/scheduler module results in figure 2’s algorithm.
The first line assures that the PROJECTION variable
always reflects how the state of a rover should evolve as its
plan executes, and the fifth line causes this execution by
passing near-term activities to the executive/diagnostician.
Upon passing a near-term activity, a rover is committed to
its execution and the planner can no longer change it — only
the executive/diagnostician can. These near-term activities
are defined as those that start within a domain specific
amount of time in the future, and the time between now and
that future point is the planner’s comimit window.

Given: a PLAN with multiple activities
a PROJECTION of PLAN into the future

1. Revise PROJECTION using the currently
perceived state and new goal activities from the
mission manager.

2. Heuristically choose a plan flaw found in
PROJECTION.

3. Heuristically choose a flaw repair method.
4. Use method to alter PLAN & PROJECTION.

5. Release relevant near-term activities in PLAN to
the executive/diagnostician.

6. Goto1t.

figure 2 — continual planning using heuristic iterative
repair

The expected future state evolution changes as a plan gets
new goal activities and the perceived state diverges from
expectations.  This divergence is caused by uncxpected
exogenous cvents and activities  having  unexpected



outcomes. Since a planning model can only approximate
the reality experienced during execution, there is no way to
guarantee the impossibility of unexpected state changes in
nontrivial domains.

At any moment the projection can detect flaws in a local
plan, and lines 2 through 4 select and apply repair methods
to fix the flaws that appear after the commit window. For
instance, a rover’s observation activity can take an
unexpectedly long time to complete. Depending on the
delay, a subsequent observation may be impossible due to
sunset occurring before the rover can reach the appropriate
measurement location. A repair method might fix the flaw
by rescheduling the observation to a later time, like the next
morning. ‘

Those flaws that involve committed, or executing, activities
are repaired using domain specific techniques within the
executive/diagnostician.  Using a commit window to
determine whether or not the planner/scheduler fixes a flaw
is motivated by the computational cost of planning and
scheduling. When a flaw appears in the commit window, a
fast correct technique is needed to fix the problem, like just
deleting all offensive activities. When the flaw appears
after the commit window, there is time to alter the plan with
slower techniques that produce more optimal results.

4. COORDINATING MULTIPLE ROVERS

In an earlier paper, we compared 3 methods for
coordinating a population of rovers from a central lander in
the MISUS scenario described in section 2 [8]. The first
and simplest method involved using a central planning to
manage a population with a leader-follower architecture,
where the lander generates plans that are subsequently
executed by the rovers. The second method involved
distributed planning where each rover planned its own
activities, and the lander planned for all rovers at an
abstract level to determine how to distribute goals amongst
the rover population. Finally, the third method pushed all
planning onto the rovers and left an auctioneer on the
lander to distribute goals based on a contract network
protocol [9, 10} — a commonly used coordination paradigm
within the distributed artificial intelligence community.
Within a contract net protocol, an auctioneer announces a
task to a set of contractors, each contractor bids for it, and
the auctioneer awards the task to the contractor with the
best bid.

Within these 3 methods there was an underlying assump-
tion that the population operated it a static well-understood
environment. The system planned all activities, executed
them, and then planned for the next set of activities. There
was little thought about what happened when the environ-
ment became dynamic and partially understood — the
motivations for continual planning.

Central Planning

The simplest way to extend continual planning for single-
rover autonomy to autonomous multi-rover missions
involves using a master/slave approach where a single
leader performs all autonomy reasoning. The slaves only
transmit sensor values to the leader and forward control
signals received from the leader’s reactive controller to
their appropriate local devices. In this way the entire
system is treated as a single multi-armed lander.

Altering this system by closing reaction Joops on board the
slaves to reduce the massive communication requirements
results in a leader/follower approach (fig 3), where a lander
uses a central planner to manage three rovers. Within the
planner box, planned activities are represented as horizontal
bars with effects on resources appearing below. While the
planner can move some of these activities, others are fixed
to represent exogenous events like sunset. The commit
window overlaps the planner box and moves to the right
over time. Whenever the window moves over a primitive
activity, the activity is committed and sent to the
appropriate executive/diagnostician. As a rover performs
activities, it observes local conditions and sends state
updates back to the lander to facilitate projection revision.

Window
Updates

figure 3 — coordinating rovers with a central planner

With respect to our evaluation metrics, using a continual
planner with a master/slave approach toward multi-platform
coordination facilitates allowing a variable amount of
remote autonomy. At the least autonomous extreme the
continuous planner is given low-level command sequences
and can only apply a go-to-safe-mode repair method upon
detecting a flaw. This extreme maximizes the first set of
metrics. The most autonomous extreme reduces the first set
of metrics while improving the second set. Here the
planner is only given a set of abstract activities and uses
local information and heuristics improve cvent response
time and the quality of downlinked data. While functional
redundancy and inter-platform bandwidth are unaffected by
moving from one extreme to another. turning the slaves into
followers increases redundancy and reduces bandwidth.
Due to how easily this change can degrade the cvent



response time, turning slaves into followers is an active
research topic in the multi-agent research community [11].

Distributed Planning

Turning followers into contractors raises issues regarding
how to coordinate multiple planners. In our distributed
planning approach, this coordination is achieved through
using a continual goal distribution planner on the lander,
and this planner continuously manages the distribution of
goals based on continually updated partial information from
the rovers. For instance, the architecture for a 3 rover
scenario would look like figure 4, where the distribution
planner might model rovers in a multi-rover scenario as
points on a graph where each rover can travel a known
distance from one goal activity’s observation target to
another’s. As abstract activities fall into ‘the distribution
planner’s commit window, the lander transmits them to the
appropriate rovers for subsequent rover planning and
execution. This use of the lander’s commit window results
in a tradeoff involving the window’s size. A longer commit
window results in letting each rover seeing more of its
future activities at any given time, and this lets each rover
shuffie its activities to optimize local concerns.
Alternatively, a shorter commit window lets the lander
delay sending a goal to a rover in order to optimize global
concerns.

Goal Distribution

/ ¢ I e

23 Planner
Abstract State & F
Activity Updates Goals

figure 4 — continual goal distribution planning

In our rover as a point on a plane characterization, the
distribution-planning  problem becomes a Multiple-
Traveling Salesman Problem (MTSP) [12] where the
members of a sales team must collectively visit each of a
set of cities and the maximum traveling time of the
salesmen 1s minimized. While this is a NP-Complete
problem, there are fast greedy approaches that find slightly
sub-optimal  solutions. By encoding one of these
approaches into our distribution planner, the lander can
both determine how to distribute the goal activities and

provide a rough estimate on the order in which a rover
should visit its targets to perform the goal activities.

With respect to our evaluation metrics, distributed planning
facilitates variable autonomy both with the ground and
across the platforms.  Minimizing autonomy across
platforms involves making the distribution planner use full
information and generate low-level action sequences for the
other platforms, which can only execute their actions. This
restriction turns distributed planning into the previously
evaluated central planning approach.

Maximizing autonomy on the contractor platforms has the
same effects as maximizing autonomy for the central
planner, but also adds a reduction to inter-platform
bandwidth needs. The lead platform no longer needs to
maintain full state information, and each platform’s planner
can locally respond to events without informing the leader.
Now a contractor can resolve a flaw by either quietly
shuffling its local activities or reporting failure to the leader
upon deleting a local activity. This quiet shuffle reduces
bandwidth needs while failure reporting facilitates moving
activities between platforms via the leader’s continuously
repairing its goal distribution plan.

Contract Networks

One way to minimize the amount of continuously updated
rover information on the lander results in taking a contract
network approach toward coordinating multiple planners
(fig 5). Here a leader advertises each goal and each
contractor bids on the goals based on its local information.
To respond to an unexpected event, a contractor will either
quietly shuffle its activities or delete a local activity and
report failure to the leader. Upon hearing of a failure, the
leader can re-advertise the failed goal for auction. Notice
that there is no need for continuously updated partial
contractor information — the leader does not need to know
anything about the contractors to auction a goal.

Using a contract net protocol to implement a greedy
solution to the MTSP involves making the lander take goal
activities and incrementally advertise them to all rovers.
Upon receiving a task, a rover uses its onboard planner to
try to fit a solution to the goal activity into its current
schedule. Upon succeeding, a rover bids its total projected
travel distance after including the new observation. Rovers
that fail to insert the task within a time limit do not
participate in the auction. While receiving bids, the lander
keeps the best bid and continually rejects lesser bids. When
the auction’s time limit is reached, the lander awards the
task to the rover with the best bid. By bidding the total
distance the rovers minimize the maximum rover travel
distance — an MTSP solution. This use of a rover's
continual planner to bid exposed another tradeoff involving
the length of each rover’s commit window. While a longer
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figure 5 — continual goal auction

commit window results in allowing longer auctions with
more participating rovers, a shorter commit window keeps
each rover from having to use the fast sub-optimal plan
repair techniques.

With respect to our evaluation metrics, letting an operator
restrict the platforms that can bid for certain activities
results in a system with variable autonomy. At one extreme
the operator can specify a low-level activity sequence for
each platform, and at the other the leader gets a set of high-
level goals that can go to any platform.

As before, the first extreme scores best on the autonomy
minimization metrics and the second scores best on the
autonomy maximization metrics. While this approach has
lower inter-platform bandwidth needs than the other
approaches, it has more computational overhead and
assumes a greedy approach toward optimization.

5. RELATED WORK

While there is a large literature on cooperating robots, most
focuses on behavioral approaches that do not explicitly
reason about partitioning goals and planning courses of
action. Three notable exceptions are GRAMMPS [13],
MARS [14], and RETSINA [15]. GRAMMPS is a system
coordinating multiple mobile robots visiting locations in
cluttered partially known environments. This system shares
quite a bit similarity with our central goal allocation with
distributed planning architecture for rovers. Both systems
solve an MTSP problem to distribute targets, and both have
low level planners on each mobile robot, but GRAMMPS
focuses on path planning while learning a terrain instead of
focussing on resources and exogenous events. On the other
hand, MARS is a cooperative transportation scheduling
system that shares many simifaritics with the contract net

approach, and RETSINA uses peer-to-peer coordination
similar to goal distribution planning. Neither MARS nor
RETSINA models known exogenous events or provides
default mechanisms for altering plans and transferring goals
to resolve execution failures.

Other systems applying cooperating robotics research in
aerospace domains include TeamAgent™ [16] and an
architecture for autonomy developed at LAAS-CNRS [17].
While the TeamAgent™ taxonomy of agents participating
in a population has many similarities to our slave, follower,
contractor, and leader breakdown, this system focuses on a
behavioral approach. The system from LAAS-CNRS on
the other hand shares many similarities with our continual
goal distribution planning approach. This system managed
a fleet of 30 mobile robots that transported containers
inside a building.

6. CONCLUSIONS

This paper compared and contrasted 3 continuous task-
distribution-based coordination schemes for commanding
multiple rovers with collective goals instead of goals or
command sequences for each rover: central planning,
distributed planning, and contract networks. All schemes
supported variable autonomy and were evaluated with
respect to 8 different metrics. At the lowest autonomy
setting, all schemes devolved into commanding the
platforms with low-level sequences, and at the highest
autonomy setting the schemes differed primarily in terms of
needed onboard computing, inter-platform bandwidth, and
redundancy. While central planning kept all computing on
the lander, distributed planning spread the computing
overhead across all platforms. The result was a decrease in
inter-platform bandwidth needs and an increase in
redundancy with an unchanging total computing overhead.
Contract networks further improved the bandwidth needs
and redundancy, but this scheme also increased the total
computing overhead by letting each platform see and bid
for each goal.

Reasoning about incremental autonomy for distributed
planning and contract networks results in a realization that
these approaches toward coordinating multiple planner/
schedulers can be combined. The resultant approach would
used a goal distribution planner, but would only collect
enough information to limit the number of platforms that
participate in an auction. One avenue for future work
involves building a coordination mechanism that spans the
space between contract networks and distributed planning.
Another future research direction involves generating joint
activities for multiple spacecraft/rovers to collectively
satisfy. This would extend our approach to coordinating
task execution for multiple platforms. Finally, a third
research direction involves making the rovers/orbiters
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